

Courses to be offered Courses for Course Basket for Interdisciplinary Courses 2021. Department of Chemistry and Chemical Science

	FIRST SEMESTER (2021-2023) NEP Pattern			
Course Code	Name of the Course	Credit	Semester	Faculty
	Organic Stereochemistry and	2	B.Sc. 1st	SB/MK
CCS 5101	Spectroscopy			

CCS 5101: Organic Stereochemistry and Spectroscopy

Credit: 2

Teaching hours: 60

UNIT-I

Stereochemistry and Conformational Analysis: Stereochemistry and stereoisomerism, stereochemical nomenclature & terminology, Chirality, the chiral centre, 2-D representations (Fischer projections), Optical activity, Plane-polarized light, the polarimeter, Specific rotation, Specification of configuration: R and S, Sequence rules, Diastereomers, Meso structures, Specification of configuration: More than one chiral center, Generation of a chiral center. Threo-and erythro- isomers, methods of resolution and optical purity. Conformational analysis-Conformation of cycloalkanes, Equatorial and axial bond in cyclohexane, Conformation of cycloalkanes, Equatorial and axial bond in cyclohexane, Stereoisomerism of cyclic compounds: cis- and trans- isomers.

UNIT-II

UV Spectroscopy: General principles, Introduction to absorption and emission spectroscopy. Types of electronic transitions, λ max, Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of λ max for the following systems: α,β unsaturated aldehydes, ketones, carboxylic acids and esters;

Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between *cls* and *trans* isomers.

UNIT-III

IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in functional group analysis.

UNIT-IV

NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it; Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple compounds.

Reference books

- 1. Organic spectroscopy Principles and Applications, Second Edition, Jag Mohan., Narosa Publishing House.
- 2. Elementary Organic spectroscopy, Principles and chemical Applications, Y.R. Sharma, S. Chand.
- 3. Advanced Organic Chemistry, Jagdamba singh, L.D.S Yadav